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Some topological polynomial indices of nanostructures
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Let G=(V,E) be a graph, where V is a non-empty set of vertices and E is a set of edges. Suppose that G be a graph,
e=uv € E(G), d(u) be degree of vertex u. In this paper we compute Zagreb, Randi¢ and ABC indices Polynomial of
TUCA4C8(S), TUC4C8(R) nanotube and V-Phenylenic nanotorus.

(Received May 30, 2011; accepted July 25, 2011)

Keywords: Zagreb Index, Randi¢ Index, ABC Index, Polynomial, Nanotube, Nanotori

1. Introduction

All of the graphs in this paper are simple. A molecular
graph is a simple graph such that its vertices correspond to
the atoms and the edges to the bonds. Note that hydrogen
atoms are often omitted [2].

Mathematical chemistry is a branch of theoretical
chemistry for discussion and prediction of the molecular
structure using mathematical methods without necessarily
referring to quantum mechanics. Chemical graph theory is
a branch of mathematical chemistry which applies graph
theory to mathematical modeling of chemical phenomena
[3,4,5]. This theory had an important effect on the
development of the chemical sciences.

A topological index is a numeric quantity from the
structural graph of a molecule. Usage of topological
indices in chemistry began in 1947 when chemist Harold
Wiener developed the most widely known topological
descriptor, the Wiener index, and used it to determine
physical properties of types of alkanes known as paraffin
[6].

If x,y € V(G) then the distance dg(X,y) between x and
y is defined as the length of any shortest path in G
connecting X and Y.

The Zagreb indices have been introduced more than
thirty years ago by Gutman and Trinajsti¢ [3]. They are

defined ZG\(G)= »_d, +d,,ZGxG)= ».d,d, and

ecE(G) ecE(G)
Zagreb Polynomial index is defined
ZG\(Gx)= Y XM ZGyGx= Do XM

ecE(G) ecE(G)

where d, and d, are the degrees of u and v. The
connectivity index introduced in 1975 by Milan Randic¢ [4,
5, 6], who has shown this index to reflect molecular
branching. Randi¢ index (Randi¢ molecular connectivity

index) was defined as follows — ,(G)= Z .
uveE(G) dudv
Recently Furtula et al. [2] introduced atom-bond
connectivity (ABC) index, which it has been applied up
until now to study the stability of alkanes and the strain

energy of cycloalkanes. This index is defined as follows

ABCG)= ¥ [%thT2 Ang Polynomial
uveE(G) du + dv
7(G),ABC(G) indices is defined

- d, 44,2
(@)= FxI . ABC,(G,)= zxm.

uweE(G) ueE(G)

2. Main result and discusion

Diudea and his co-authors was the first scientist
considered topological indices of nanostructures into
account. In some research paper, he and his team
computed the Wiener index of armchair, zig-zag and
TUC,4Cg(R/S) nanotubes. One of us (ARA) continued this
program to compute the Wiener index of a polyhex and
TUC,4Cg(R/S) nanotori. In this sections, we compute this
indices, for some well-known class of graphs, and in
continue we calculate this indices for TUC,Cg(S)
nanotube and V-Phenylenic nanotorus.

Fig. 1. A TUC,Cg(S) nanotube.
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Example 1. Let C, be a cycle on n vertices. We know all
of vertices are of degree 2 and so

ZG,(C,,X) = ZG,(C,,x) = nx*, 7o(C,,X) = n/x

and  ABC,(C,,X) =n"3/x

Example 2. Let K, be a complete graph on n vertices.
We know all of vertices of degree n-1 and so

ZG,(K,,x) = D x*" 0 =nx*"?

uveE(K,)

2G,(K,, 0= > x™ =

uveE(K,)

1
(K x)= Y xV™ = n™x and

uveE(K,)
[(-D+(n-D-2 [2n—4
(n-1)+(n-1) —
ABC,(K,,x)= Y x =nx"2n-2
uveE(K,)

Example 3. Let S, be a star on n + 1 vertices. One can see
there are n vertices of degree 1 and a vertex of degree n.
So,

ZG,(S,,X) = XZG,(S,,x) = Y x"" =nx""

uveE(S,)
1
e (S,,X) = me=n-% and
uveE(S,)
n+1-2 \/E
ABC,(S,,x)= Y x' ™! =nx'mt.
uveE(S,)

Example 4. Let Wn be a graph of wheel on n + 1
vertices. One can see there are n vertices of degree 3 and a
vertex of degree n. So |[E(W,)=2n , we have e, and e,
cases of edges in E(Wn) is different and |E(e))|=n ,
|[E(ey)l=n . Then

ZGI(\Nm X) = zxdﬁdv =

uveE(W,)
DX DX = (XM X +])
uveE(e) uveE(e,)

ZG,W,, )= D x* =

uveE(W,)
DX+ X =X (X" +1)
uveE(e)) uveE(e,)
1
\Y dvdu
4 (Wn ,X) = z X =
uveE(W,)

SUx+ D Wx=n(Ux +x)

uveE(e)) uveE(e;)

d,+d,—2
ABC,(W,,x)= > x' %% =

uveE(W,)
\E il
Sl -
uveE(e)) uveE(e,)

n([i/ xV? 4 I \ x V1 )

Now we compute Zagreb, Randi¢ and ABC indices of
a TUC,Cqg(S) nanotube as described above. The Randic,
Zagreb and ABC indices of the 2-dimensional lattice of
TUC,Cg(S) graph K= KTUC[p,q] (Fig 2) is also
computed. Following Diudea [8,9], we denote a
TUC4CS8(R) nanotorus by H=HTUC][p,q] (Fig3).
It is easy to see that [V(K)| = [V(H)| =8pq, |E(K)| = 12pq -
2p-2q and |[E(H)| = 12pq. We also denote an V-Phenylenic
nanotorus by Y = VPHY[4p,2q] where |E(Y)=36pq see
Fig 4.

[E©)

One can see that ZG,(G,Xx) = Z X/
i=1

|E(G)| lE@) L

2G,(G. )= 3 X, 7p(G,x) = 3 xV*
i=1 i=1

|E@) (A2
And ABC,(G,x)= Y X' where o =d,d,
i=1

and B =d, +d, . So whit respect the molecular graph
i Vi u;

of K (Fig. 2), one can see that there are three separate
cases and the number of edges is different. Suppose e, e,
and e; are representative edges for these cases. Then

og=a,=p=p=4,a,=6and B,=5.

We define N(e)=|{¢' € E(G) s.t e||¢' }|, in graph G, so
we have N(e;)= 2p+2q+4 , N(e,)=4(p + q - 2) and N(e3)=
12pq—-8p-8q+4.

el, 02

a3

Fig. 2. 2-Dimensional Lattice of TUC4C8(S) Nanotorus
withp=4andq=2.
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E©)|

ZG,(TUC,Cy(S),x) = Y x/

i=1
= N(e)x” + N(e,)x” + N(e,)x”
=6(2pq-p-q+1)x* +4(p+q-2)x’

[EG)|

ZG,(TUC,Cy(S),x) = > x“

i=1
=N(e)x“ + N(e,)x* + N(e,)x*
=6(2pq-p-q+1)x*+4(p+q-2)x°

|EG)| [A2

ABC,(TUC,C((S),x)= >_ x" /
i=1
= =
= N(el)xﬁ +N(e,)x" *
B2
+ N(egxﬁ

2 \F
_ 2 5
=6(2pg-p-q+1) X = +4(p+q-2) X

lEe) L

2p(TUC,C(S),%) = Z XV =
i-1
1 1 1

N(e)x ™ + N(&,)x™™ + N(e,)x'™
~6(2pq-p-q+1)~/X +4(p+q-2) Y

We now consider the molecular graph H=HTUC[p,q], Fig.
3, and Y=V-Phenylenic nanotorus Fig. 7.

Theorem 1. For an arbitrary graph G,

(@ ZG,(G,x)=|E(G)|-x™ if and only if G
be a k-regular graph.

®) ZG,(G,x)=|E(G)|-x*" ifand only if G
be a k-regular graph.

© 20(G,X) = E(G) |4/ ifand only if G be
a k-regular graph.

=
(d) ABC,(G,x)= E(G)|x K if and only
if G be a k-regular graph.

Proof: If G be k-regular then it is easy to see that for

k-1

every ¢€V(G), « =K’and S = P then

ZG,(G), ZG,(G), y(G)and ABC(G) implies that
this indices Polynomial.
Conversely, for (b) suppose 7G,(G,x) = \E(G)\ XK

So XU 4 X% 4o £ X“EO Z E(G) | X this implies
a; ZdV.du. =k”and dVi sz. =k

then G, k-regular. And for (d) suppose
k-1
ABC,(G,x) = E(G)| X" © then
k-1
X2 4 xPr g xPEer 2 x‘rk |E(G)|,  so

k-1
X7 |E(G)|= xE |E(G)| = B = ,/% for

I<i< |E(G)| and this proof (d) is completed. Proof (a)

and (c) are similarly.

Fig. 3. The 2-Dimensional Lattice of TUC4C8(R) Nanotorus.

By using Theorem 1, consider the Fig. 3. One can see
that TUC,Cg(S) graph is 3-regular, so

ZG,(TUC,C(R),x) = |[E(TUC C(R))|x*

=12pgx°
ZG,(TUC,C,(R),X) =|E(TUC,Cy(R)|X*

=12 pgx’

#-(TUC,C,(R),X) = E(TUC,C,(R)) |/x
- 12pgi/x

and

\/E
ABC, (TUC,C,(R),x) =| E(TUC,C,(R))| x' ¥ -

12 pq[\S/ X2

Naw by using Theorem 1, consider the Y=V-Phenylenic
nanotorus, Fig. 4.

ZG,(Y,x) =|E(Y)[x* =36pax°,
ZG,(Y,x) =|E(Y)|x* =36pax’
2p(Y.%) = E(Y)|¥/x =36 pa/x .

k-1

k-1 2
And ABC,(Y,x) = E(Y)|x' ¥ =36pqx‘E
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Fig. 4. A V-Phenylenic nanotorus.

3. Conclusions

In this paper a method for computing Polynomial of
Zagreb Index, Randi¢ Index, ABC Index over a new class
of nanostructures is presented. This method is useful for
working by all nanostructures. We applied our method on
an infinite class of nanostructures.
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