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Some topological polynomial indices of nanostructures 
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Let G=(V,E) be a graph, where V is a non-empty set of vertices and E is a set of edges. Suppose that G be a graph, 
e=uv∈E(G), d(u) be degree of vertex u. In this paper we compute Zagreb, Randić and ABC indices Polynomial of  
TUC4C8(S), TUC4C8(R)  nanotube and V-Phenylenic nanotorus. 
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1. Introduction 
 
All of the graphs in this paper are simple. A molecular 

graph is a simple graph such that its vertices correspond to 
the atoms and the edges to the bonds. Note that hydrogen 
atoms are often omitted [2]. 

Mathematical chemistry is a branch of theoretical 
chemistry for discussion and prediction of the molecular 
structure using mathematical methods without necessarily 
referring to quantum mechanics. Chemical graph theory is 
a branch of mathematical chemistry which applies graph 
theory to mathematical modeling of chemical phenomena 
[3,4,5]. This theory had an important effect on the 
development of the chemical sciences. 

A topological index is a numeric quantity from the 
structural graph of a molecule. Usage of topological 
indices in chemistry began in 1947 when chemist Harold 
Wiener developed the most widely known topological 
descriptor, the Wiener index, and used it to determine 
physical properties of types of alkanes known as paraffin 
[6]. 

If  x,y∈V(G) then the distance dG(x,y) between x and 
y is defined as the length of any shortest path in G 
connecting x and y.  

The Zagreb indices have been introduced more than 
thirty years ago by Gutman and Trinajstić [3]. They are 
defined  ZG1(G)= ∑

∈

+
)(GEe

vu dd , ZG2(G)= ∑
∈ )(GEe

uvdd   and 

Zagreb Polynomial index is defined 
ZG1(G,x)= ∑

∈

+

)(GEe

dd uvx , ZG2(G,x)= ∑
∈ )(GEe

dd uvx  . 

where du and dv are the degrees of u and v. The 
connectivity index introduced in 1975 by Milan Randić [4, 
5, 6], who has shown this index to reflect molecular 
branching. Randić index (Randić molecular connectivity 

index) was defined as follows   ∑
∈

=
)(

1)(
GEuv vudd

Gχ . 

Recently Furtula et al. [2] introduced atom-bond 
connectivity (ABC) index, which it has been applied up 
until now to study the stability of alkanes and the strain 
energy of cycloalkanes. This index is defined as follows  

∑
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−+
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P
vu
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2. Main result and discusion 
 
Diudea and his co-authors was the first scientist 

considered topological indices of nanostructures into 
account. In some research paper, he and his team 
computed the Wiener index of armchair, zig-zag and 
TUC4C8(R/S) nanotubes. One of us (ARA) continued this 
program to compute the Wiener index of a polyhex and 
TUC4C8(R/S) nanotori. In this sections, we compute this  
indices, for some well-known class of graphs, and in 
continue we calculate this  indices for TUC4C8(S) 
nanotube and V-Phenylenic nanotorus. 

 

 
 

Fig. 1. A  TUC4C8(S) nanotube. 
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Example 1. Let Cn be a cycle on n vertices. We know all 
of vertices are of degree 2 and so 
     

4
21 ),(),( nxxCZGxCZG nn == , xnxCnP =),(χ    

and   2),( xnxCABC nP =  
Example 2.  Let Kn be a complete graph on n vertices.  
We know all of vertices of degree  n-1 and so 
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Example 3. Let Sn be a star on n + 1 vertices. One can see 
there are n vertices of degree 1 and a vertex of degree n. 
So, 
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Example 4.  Let Wn be a graph of wheel on n + 1 
vertices. One can see there are n vertices of degree 3 and a 
vertex of degree n. So |E(Wn)|=2n ,  we have e1 and e2 
cases of edges in  E(Wn) is different and |E(e1)|=n , 
|E(e2)|=n  . Then  
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Now we compute Zagreb, Randić  and ABC indices of 
a TUC4C8(S) nanotube as described above. The Randić, 
Zagreb and ABC indices of the 2-dimensional lattice of 
TUC4C8(S) graph K= KTUC[p,q] (Fig 2) is also 
computed. Following Diudea [8,9], we denote a 
TUC4C8(R) nanotorus by H = HTUC[p,q]  (Fig 3 ).  
It is easy to see that |V(K)| = |V(H)| =8pq, |E(K)| = 12pq -
2p-2q  and |E(H)| = 12pq. We also denote an V-Phenylenic 
nanotorus by Y = VPHY[4p,2q] where  |E(Y)|=36pq  see 
Fig 4. 

 One can see that ∑
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 where 
ii uvi dd=α  

and 
ii uvi dd +=β . So whit respect the molecular graph 

of K (Fig. 2), one can see that there are three separate 
cases and the number of edges is different. Suppose e1, e2 
and e3 are representative edges for these cases. Then 

43131 ==== ββαα  , 62 =α  and 52 =β . 
We define N(e)=|{e'∈E(G) s.t  e||e' }| , in graph G, so 

we have N(e1)= 2p+2q+4 , N(e2)= 4(p + q - 2) and N(e3)= 
12pq – 8 p -8 q + 4. 

 
 

 
 
 

Fig. 2. 2-Dimensional Lattice of TUC4C8(S) Nanotorus  
with p = 4 and q = 2. 
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We now consider the molecular graph H=HTUC[p,q], Fig. 
3, and Y=V-Phenylenic nanotorus Fig. 7. 

 
Theorem  1. For an arbitrary graph G,   

(a)  kxGExGZG 2
1 )(),( ⋅=  if and only if G 

be a k-regular graph. 

(b)   
2

)(),(2
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(c) k
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a k-regular graph. 
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Proof:  If G be k-regular then it is easy to see that for 
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k
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        Conversely, for (b) suppose 2
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)(1 GEi ≤≤ and this proof (d) is completed. Proof  (a) 
and (c) are similarly.  
 
 

 
 

Fig. 3. The 2-Dimensional Lattice of TUC4C8(R) Nanotorus. 
 

 
By using Theorem 1, consider the Fig. 3. One can see 

that  TUC4C8(S)  graph is 3-regular, so  
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Naw by using Theorem 1, consider the Y=V-Phenylenic 
nanotorus, Fig. 4. 
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Fig. 4. A V-Phenylenic nanotorus. 
 
 
 

3. Conclusions 
 
In this paper a method for computing Polynomial of 

Zagreb Index, Randić Index, ABC Index over a new class 
of nanostructures is presented. This method is useful for 
working by all nanostructures. We applied our method on 
an infinite class of nanostructures. 
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